Clockwork ☃️✒️<p>💾 Even if my <a href="https://sociale.network/tags/PhD" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PhD</span></a> is over, I'm still closing some projects I had begun with my former research group in <a href="https://sociale.network/tags/Warsaw" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Warsaw</span></a>.</p><p>In this one, we've studied <a href="https://sociale.network/tags/Superfluid" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Superfluid</span></a> currents across three regimes (from <a href="https://sociale.network/tags/BCS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>BCS</span></a> to <a href="https://sociale.network/tags/UFG" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>UFG</span></a>) in the presence of an obstacle. If currents are too high, vortices appear in the ring.</p><p>I can't yet tell if <a href="https://sociale.network/tags/Atomtronic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Atomtronic</span></a> circuitry will be developed or practical, but this hints that wires with "spikes" inside might make the currents more stable.</p><p><a href="https://sociale.network/tags/Physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Physics</span></a> <a href="https://sociale.network/tags/HPC" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>HPC</span></a> </p><p><a href="https://link.aps.org/doi/10.1103/PhysRevResearch.7.013225" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">link.aps.org/doi/10.1103/PhysR</span><span class="invisible">evResearch.7.013225</span></a></p>