mastodon.gamedev.place is one of the many independent Mastodon servers you can use to participate in the fediverse.
Mastodon server focused on game development and related topics.

Server stats:

5.4K
active users

#fluidsasart

0 posts0 participants0 posts today
Nicole Sharp<p><strong>A Stellar Look at NGC 602</strong></p><p>The young star cluster NGC 602 sits some 200,000 light years away in the Small Magellanic Cloud. Seen here in near- and mid-infrared, the cluster is a glowing cradle of star forming conditions similar to the early universe. A large nebula, made up of multicolored dust and gas, surrounds the star cluster. Its dusty finger-like pillars could be an example of Rayleigh-Taylor instabilities or plumes shaped by energetic stellar jets. (Image credit: <a href="https://esawebb.org/images/weic2425a/" rel="nofollow noopener noreferrer" target="_blank">NASA/ESA/CSA/JWST</a>; via <a href="https://www.thisiscolossal.com/2024/10/ngc-602-image/?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Colossal</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/astronomy/" target="_blank">#astronomy</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/instability/" target="_blank">#instability</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/nebula/" target="_blank">#nebula</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/stellar-evolution/" target="_blank">#stellarEvolution</a></p>
Nicole Sharp<p><strong>Strandbeest Evolution</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/sbeest1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/sbeest2.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/sbeest3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>Theo Jansen’s Strandbeests are massive, wind-powered kinetic sculptures designed to roam Dutch beaches. Conceived in the late 1980s as a way to kick up sand that would replenish nearby dunes, the beests have grown into a decades-long obsession for the artist and his followers. This Veritasium video charts the development and evolution of the Strandbeest from its original concept through Jansen’s increasingly self-sufficient versions. I found the leg linkage of the Strandbeest especially fascinating. How neat to find a relatively simply proportion of linkages capable of turning a small crank’s motion into a stable walking gait. Anyone else feel like building a miniature Strandbeest now? (Video and image credit: Veritasium)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/erosion/" target="_blank">#erosion</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/wind-energy/" target="_blank">#windEnergy</a></p>
Nicole Sharp<p><strong>“My Own Galaxy”</strong></p><p>Fungal spores sketch out minute air currents in this shortlisted photograph by Avilash Ghosh. The moth atop a mushroom appears to admire the celestial view. In the largely still air near the forest floor, mushrooms use evaporation and buoyancy to generate air flows capable of lifting their spores high enough to catch a stray breeze. (Image credit: <a href="https://www.cupoty.com/insects-shortlist-6" rel="nofollow noopener noreferrer" target="_blank">A. Ghosh/CUPOTY</a>; via <a href="https://www.thisiscolossal.com/2024/10/cupoty-6-shortlist/?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Colossal</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/buoyancy/" target="_blank">#buoyancy</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/evaporation/" target="_blank">#evaporation</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/moths/" target="_blank">#moths</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/mushrooms/" target="_blank">#mushrooms</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>“Waterfall Wonder”</strong></p><p>The Semeru volcano rises in the background of this photo of Java’s Tumpak Sewa waterfall by Joan de la Malla. Rain that falls on the volcano slides down its flank and wanders through the jungle on its way to the spectacular 120-meter-high waterfall. From the clouds wreathing the mountain through the jungle’s drifting fogs to the mists of the falls, this portrait highlights the many forms water takes on its journey. (Image credit: <a href="https://www.nhm.ac.uk/wpy/gallery/2024-waterfall-wonder?tags=ed.current" rel="nofollow noopener noreferrer" target="_blank">J. de la Malla/WPOTY</a>; via <a href="https://www.thisiscolossal.com/2024/09/wildlife-photo-contest-2024/" rel="nofollow noopener noreferrer" target="_blank">Colossal</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/waterfalls/" target="_blank">#waterfalls</a></p>
Nicole Sharp<p><strong>Bubbling Up</strong></p><p>By volume, Lake Baikal is the world’s largest lake, holding over 20% of the planet’s fresh water. It’s also a major carbon sink, holding large amounts of methane. That’s the gas trapped in the frozen bubbles seen here. Baikal’s ice is exceptionally clear, making long trails of frozen bubbles visible during the winter. (Image credit: <a href="https://www.flickr.com/photos/23502952@N03/" rel="nofollow noopener noreferrer" target="_blank">K. Makeeva</a>; via <a href="https://apod.nasa.gov/apod/ap241229.html" rel="nofollow noopener noreferrer" target="_blank">APOD</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/bubble/" target="_blank">#bubble</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/ice/" target="_blank">#ice</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>“Flowing Kelp”</strong></p><p>This CUPOTY-shortlisted photo by Sigfrido Zimmerman shows <a href="https://en.wikipedia.org/wiki/Macrocystis" rel="nofollow noopener noreferrer" target="_blank">giant kelp</a> drifting in the current. At the base of each blade is an inflated bladder that helps keep the algae buoyant. The blades themselves are furrowed on their surface, with patterns reminiscent of sand ripples. Though giant kelp can grow to as large as 60 meters, the species lives in constant flux, pushed and pulled by the currents that run along its length. (Image credit: S. Zimmerman/CUPOTY; via <a href="https://www.thisiscolossal.com/2024/10/cupoty-6-shortlist" rel="nofollow noopener noreferrer" target="_blank">Colossal</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/kelp/" target="_blank">#kelp</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>The Best of FYFD 2024</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/tsdam3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/ant_fast_pull.gif" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/supernova-1.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/sprinkler_forward.gif" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/e196_1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/clark-1.gif" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/e211_2.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/A23_main.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/emf3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/willen-4-scaled-1.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/Comet12pTails_ShengyuLi_3000-scaled.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/PillarsMongolia_Liao_960_annotated.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/LMP1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/misfara1.gif" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/SunTriangle_Vanoni_960.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>Welcome to another year and another look back at FYFD’s most popular posts. (You can find previous editions, too, for 2023, 2022, 2021, 2020, 2019, 2018, 2017, 2016, 2015, and 2014. Whew, that’s a lot!) Here are some of 2024’s most popular topics:</p><ul><li>The Taum Sauk Dam Failure and Its Legacy</li><li>Stretching Ant Rafts</li><li>Gigapixel Supernova</li><li>Feynman’s Sprinkler Solved</li><li>Calming the Waves</li><li>“Dew Point” Deposits Droplets</li><li>Drying Unaffected by Humidity</li><li>Trapped in a Taylor Column</li><li>Exciting a Flame in a Trough</li><li>Remembering Rivers Past</li><li>A Comet’s Tail</li><li>Light Pillars</li><li>Liquid Metal Printing</li><li>The Miscible Faraday Instability</li><li>A Triangular Prominence</li></ul><p>This year’s topics are a good mix: fundamental research, civil engineering applications, geophysics, astrophysics, art, and one good old-fashioned brain teaser. Interested in what 2025 will hold? There are lots of ways to follow along so that you don’t miss a post.</p><p>And if you enjoy FYFD, please remember that it’s a reader-supported website. I don’t run ads, and it’s been years since my last sponsored post. You can help support the site by&nbsp;<a href="https://www.patreon.com/fyfd" rel="nofollow noopener noreferrer" target="_blank">becoming a patron</a>,&nbsp;<a href="https://www.redbubble.com/people/fyfluiddynamics/shop" rel="nofollow noopener noreferrer" target="_blank">buying some merch</a>, or simply by sharing on social media. And if you find yourself struggling to remember to check the website, remember you can get FYFD in your inbox every two weeks with <a href="https://fyfluiddynamics.com/newsletter/" rel="nofollow noopener noreferrer" target="_blank">our newsletter</a>. Happy New Year!</p><p>(Image credits: dam – Practical Engineering, ants – C. Chen et al., supernova – NOIRLab, sprinkler – K. Wang et al., wave tank – L-P. Euvé et al., “Dew Point” – L. Clark, paint – M. Huisman et al., iceberg – D. Fox, flame trough – S. Mould, sign – B. Willen, comet – S. Li, light pillars – N. Liao, chair – MIT News, Faraday instability – G. Louis et al., prominence – A. Vanoni)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/admin/" target="_blank">#admin</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/ants/" target="_blank">#ants</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/astrophysics/" target="_blank">#astrophysics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/civil-engineering/" target="_blank">#civilEngineering</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/comet/" target="_blank">#comet</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/dam-failure/" target="_blank">#damFailure</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/drying/" target="_blank">#drying</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fyfd/" target="_blank">#FYFD</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/instability/" target="_blank">#instability</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/plasma/" target="_blank">#plasma</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/rivers/" target="_blank">#rivers</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/rotating-flow/" target="_blank">#rotatingFlow</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/self-excited-oscillation/" target="_blank">#selfExcitedOscillation</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/taylor-column/" target="_blank">#TaylorColumn</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/wave-interference/" target="_blank">#waveInterference</a></p>
Nicole Sharp<p><strong>“Magic of the North”</strong></p><p>Fires glow above and below in this award-winning image from photographer Josh Beames. In the foreground, lava from an Icelandic eruption spurts into the air and seeps across the landscape as it slowly cools. Above, the northern aurora ripples through the night sky, marking the dance of high-energy particles streaming into our atmosphere, guided by the lines of our magnetic field. Throw in some billowing turbulent smoke, and it’s hard to get more fluid dynamical (or beautiful!) than this. (Image credit: <a href="https://capturetheatlas.com/northern-lights-photographer-of-the-year/" rel="nofollow noopener noreferrer" target="_blank">J. Beames/NLPOTY</a>; via <a href="https://www.thisiscolossal.com/2024/12/2024-northern-lights-photographer/?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Colossal</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/aurora/" target="_blank">#aurora</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/eruption/" target="_blank">#eruption</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/lava/" target="_blank">#lava</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/magnetohydrodynamics/" target="_blank">#magnetohydrodynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/solar-wind/" target="_blank">#solarWind</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/turbulence/" target="_blank">#turbulence</a></p>
Nicole Sharp<p><strong>Soaring Through the Pillars of Creation</strong></p><p>The Pillars of Creation are an iconic feature nestled within the Eagle Nebula. For decades, the public has admired Hubble’s images of this stellar nursery, and, in this video, we get to fly between the pillars, shifting between Hubble’s visible light imagery and JWST’s infrared views. In visible light, glowing dust obscures the interior of the pillars, drawing our eyes instead to the dusty shapes eroded by the stellar winds of these young stars. In infrared wavelengths, we see further into the pillars, revealing individual stars burning at the ends of the pillars’ fingers. Being able to peer at the same problem through different techniques — here visible and infrared light — reveals more to scientists than either mode can on its own. (Image/video credit: <a href="https://science.nasa.gov/missions/hubble/new-hubble-webb-pillars-of-creation-visualization/" rel="nofollow noopener noreferrer" target="_blank">G. Bacon et al.</a>; via <a href="https://gizmodo.com/trippy-nasa-3d-visualization-pillars-creation-1851562281" rel="nofollow noopener noreferrer" target="_blank">Gizmodo</a>)</p> A mosaic of Hubble and JWST’s views of the Pillars of Creation, in visible and infrared light, respectively. <p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/experimental-fluid-dynamics/" target="_blank">#experimentalFluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/nebula/" target="_blank">#nebula</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/turbulence/" target="_blank">#turbulence</a></p>
Nicole Sharp<p><strong>A Mini Jupiter</strong></p><p>Astronaut Don Pettit <a href="https://x.com/astro_Pettit/status/1847989625807065337" rel="nofollow noopener noreferrer" target="_blank">posted</a> this image of a Jupiter-like water globe he created on the International Space Station. In microgravity, surface tension reigns as the water’s supreme force, pulling the mixture of water and food coloring into a perfect sphere. It will be interesting to see a video version of this experiment, so that we can tell what tools Pettit used to swirl the droplet into the eddies we see. Is the full droplet rotating (as a planet would), or are we just seeing the remains of a wire passed through the drop? We’ll have to stay tuned to Pettit’s experiments to find out. (Image credit: <a href="https://x.com/astro_Pettit/status/1847989625807065337" rel="nofollow noopener noreferrer" target="_blank">NASA/D. Pettit</a>; via <a href="https://www.space.com/nasa-astronaut-don-pettit-jupiter-water-ball-iss" rel="nofollow noopener noreferrer" target="_blank">space.com</a>; submitted by J. Shoer)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/droplets/" target="_blank">#droplets</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/microgravity/" target="_blank">#microgravity</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>“There is a crack in everything…”</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/crack1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/crack2.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/crack3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>When millimeter-sized drops of water infused with nanoparticles dry, they leave behind complex and beautiful residues. As water continues evaporating, the residues warp, bend, and crack. In this video, researchers set their science to the music of Leonard Cohen. The results resemble blooming flowers and flying water fowl. If you’d like to learn more about the science behind the art, check out the two open-access papers linked below. (Video and image credit: P. Lilin and I. Bischofberger; submitted by Irmgard B.; see also <a href="https://doi.org/10.1103/PhysRevFluids.7.110505" rel="nofollow noopener noreferrer" target="_blank">P. Lilin and I. Bischofberger</a> and <a href="https://doi.org/10.1103/PhysRevFluids.5.110511" rel="nofollow noopener noreferrer" target="_blank">P. Lilin et al.</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/coffee-rings/" target="_blank">#coffeeRings</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/cracking/" target="_blank">#cracking</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/droplets/" target="_blank">#droplets</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/drying/" target="_blank">#drying</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/evaporation/" target="_blank">#evaporation</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/granular-material/" target="_blank">#granularMaterial</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/particle-suspension/" target="_blank">#particleSuspension</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Ice Without Gravity</strong></p><p><a href="https://arstechnica.com/space/2024/10/nasa-astronaut-don-pettit-is-a-giant-nerd-and-were-all-luckier-for-it/?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Astronaut Don Pettit</a> is back in space, and that means lots of awesome microgravity experiments. Here, he grew thin wafers of ice in microgravity in a -95 degree Celsius freezer. Then he took the ice wafers and photographed them between crossed polarizers, creating this colorful image. The colors highlight different crystal orientations within the ice and give us a hint about how the freezing front formed and expanded. I can’t wait to see more examples! (Image credit: <a href="https://www.instagram.com/p/DBlpO77RXM0/?img_index=1" rel="nofollow noopener noreferrer" target="_blank">D. Pettit/NASA</a>; via <a href="https://arstechnica.com/space/2024/10/nasa-astronaut-don-pettit-is-a-giant-nerd-and-were-all-luckier-for-it/?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Ars Technica</a>; submitted by J. Shoer)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/astronaut/" target="_blank">#astronaut</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/crystal-growth/" target="_blank">#crystalGrowth</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/ice-formation/" target="_blank">#iceFormation</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/microgravity/" target="_blank">#microgravity</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/polarized-light/" target="_blank">#polarizedLight</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Santiago Andrés Triana<p>The obstacle is a pencil, stationary, while the lazy Susan spins underneath with the fluid. The <a href="https://fediscience.org/tags/rheoscopic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rheoscopic</span></a> fluid (easily made at home, more on that on another post) allows the currents to be seen easily. An instability makes the fluid "oscillate" and create the von Kármán vortices as it flows around the pencil. Here's a video:</p><p>[3/4]<br><a href="https://fediscience.org/tags/eddies" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>eddies</span></a> <a href="https://fediscience.org/tags/flowVisualization" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>flowVisualization</span></a> <a href="https://fediscience.org/tags/fluidDynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fluidDynamics</span></a> <a href="https://fediscience.org/tags/fluidsAsArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fluidsAsArt</span></a> <a href="https://fediscience.org/tags/physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>physics</span></a> <a href="https://fediscience.org/tags/science" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>science</span></a></p>
Santiago Andrés Triana<p>This is a rotating shallow water <a href="https://fediscience.org/tags/experiment" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>experiment</span></a>, essentially a lazy Susan powered by a <a href="https://fediscience.org/tags/LEGO" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LEGO</span></a> motor and filled with a <a href="https://fediscience.org/tags/rheoscopic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rheoscopic</span></a> fluid. Here's the setup:</p><p>[2/4]<br><a href="https://fediscience.org/tags/eddies" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>eddies</span></a> <a href="https://fediscience.org/tags/flowVisualization" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>flowVisualization</span></a> <a href="https://fediscience.org/tags/fluidDynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fluidDynamics</span></a> <a href="https://fediscience.org/tags/fluidsAsArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fluidsAsArt</span></a> <a href="https://fediscience.org/tags/physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>physics</span></a> <a href="https://fediscience.org/tags/science" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>science</span></a> <a href="https://fediscience.org/tags/diynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>diynamics</span></a></p>
Santiago Andrés Triana<p>I made a circular von Kármán vortex street!<br> <br>[1/4] 🧵 <br><a href="https://fediscience.org/tags/eddies" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>eddies</span></a> <a href="https://fediscience.org/tags/flowVisualization" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>flowVisualization</span></a> <a href="https://fediscience.org/tags/fluidDynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fluidDynamics</span></a> <a href="https://fediscience.org/tags/fluidsAsArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fluidsAsArt</span></a> <a href="https://fediscience.org/tags/physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>physics</span></a> <a href="https://fediscience.org/tags/science" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>science</span></a> <a href="https://fediscience.org/tags/diynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>diynamics</span></a></p>