mastodon.gamedev.place is one of the many independent Mastodon servers you can use to participate in the fediverse.
Mastodon server focused on game development and related topics.

Server stats:

5.1K
active users

#fallacy

0 posts0 participants0 posts today

I just participated in the first W3C Authentic Web Mini Workshop¹ hosted by the Credible Web Community Group² (of which I’m a longtime member) and up front I noted that our very discussion itself needed to be careful about its own credibility, extra critical of any technologies discussed or assertions made, and initially identified two flaws to avoid on a meta level, having seen them occur many times in technical or standards discussions:

1. Politician’s Syllogism — "Something must be done about this problem. Here is something, let's do it!"

2. Solutions Looking For Problems — "I am interested in how tech X can solve problem Y"

After some back and forth and arguments in the Zoom chat, I observed participants questioning speakers of arguments rather than the arguments themselves, so I had to identify a third fallacy to avoid:

3. Ad Hominem — while obvious examples are name-calling (which is usually against codes of conduct), less obvious examples (witnessed in the meeting) include questioning a speaker’s education (or lack thereof) like what they have or have not read, or would benefit from reading.

I am blogging these here both as a reminder (should you choose to participate in such discussions), and as a resource to cite in future discussions.

We need to all develop expertise in recognizing these logical and methodological flaws & fallacies, and call them out when we see them, especially when used against others.

We need to promptly prune these flawed methods of discussion, so we can focus on actual productive, relevant, and yes, credible discussions.

#W3C #credweb #credibleWeb #authenticWeb #flaw #fallacy #fallacies #logicalFallacy #logicalFallacies


Glossary

Ad Hominem
  attacking an attribute of the person making an argument rather than the argument itself
  https://en.wikipedia.org/wiki/Ad_hominem

Politician's syllogism
  https://en.wikipedia.org/wiki/Politician%27s_syllogism

Solutions Looking For Problems (related: #solutionism, #solutioneering)
  Promoting a technology that either has not identified a real problem for it to solve, or actively pitching a specific technology to any problem that seems related. Wikipedia has no page on this but has two related pages:
  * https://en.wikipedia.org/wiki/Law_of_the_instrument
  * https://en.wikipedia.org/wiki/Technological_fix
  Wikipedia does have an essay on this specific to Wikipedia:
  * https://en.wikipedia.org/wiki/Wikipedia:Solutions_looking_for_a_problem
  Stack Exchange has a thread on "solution in search of a problem":
  * https://english.stackexchange.com/questions/250320/a-word-that-means-a-solution-in-search-of-a-problem
  Forbes has an illustrative anecdote:  
  * https://www.forbes.com/sites/stephanieburns/2019/05/28/solution-looking-for-a-problem/


References

¹ https://www.w3.org/events/workshops/2025/authentic-web-workshop/
² https://credweb.org/ and https://www.w3.org/community/credibility/


Previously in 2019 I participated in #MisinfoCon:
* https://tantek.com/2019/296/t1/london-misinfocon-discuss-spectrum-recency
* https://tantek.com/2019/296/t2/misinfocon-roundtable-spectrums-misinformation

tantek.comI just participated in the first W3C Authentic Web Mini Workshop^1 hosted by the Credible Web Community Group^2 (of which I’m a longtime member) and up front I noted that our very discussion itself needed to be careful about its own credibility, extra critical of any technologies discussed or assertions made, and initially identified two flaws to avoid on a meta level, having seen them occur many times in technical or standards discussions: 1. Politician’s Syllogism — "Something must be done about this problem. Here is something, let's do it!" 2. Solutions Looking For Problems — "I am interested in how tech X can solve problem Y" After some back and forth and arguments in the Zoom chat, I observed participants questioning speakers of arguments rather than the arguments themselves, so I had to identify a third fallacy to avoid: 3. Ad Hominem — while obvious examples are name-calling (which is usually against codes of conduct), less obvious examples (witnessed in the meeting) include questioning a speaker’s education (or lack thereof) like what they have or have not read, or would benefit from reading. I am blogging these here both as a reminder (should you choose to participate in such discussions), and as a resource to cite in future discussions. We need to all develop expertise in recognizing these logical and methodological flaws & fallacies, and call them out when we see them, especially when used against others. We need to promptly prune these flawed methods of discussion, so we can focus on actual productive, relevant, and yes, credible discussions. #W3C #credweb #credibleWeb #authenticWeb #flaw #fallacy #fallacies #logicalFallacy #logicalFallacies Glossary Ad Hominem attacking an attribute of the person making an argument rather than the argument itself https://en.wikipedia.org/wiki/Ad_hominem Politician's syllogism https://en.wikipedia.org/wiki/Politician%27s_syllogism Solutions Looking For Problems (related: #solutionism, #solutioneering) Promoting a technology that either has not identified a real problem for it to solve, or actively pitching a specific technology to any problem that seems related. Wikipedia has no page on this but has two related pages: * https://en.wikipedia.org/wiki/Law_of_the_instrument * https://en.wikipedia.org/wiki/Technological_fix Wikipedia does have an essay on this specific to Wikipedia: * https://en.wikipedia.org/wiki/Wikipedia:Solutions_looking_for_a_problem Stack Exchange has a thread on "solution in search of a problem": * https://english.stackexchange.com/questions/250320/a-word-that-means-a-solution-in-search-of-a-problem Forbes has an illustrative anecdote: * https://www.forbes.com/sites/stephanieburns/2019/05/28/solution-looking-for-a-problem/ References ^1 https://www.w3.org/events/workshops/2025/authentic-web-workshop/ ^2 https://credweb.org/ and https://www.w3.org/community/credibility/ Previously in 2019 I participated in #MisinfoCon: * https://tantek.com/2019/296/t1/london-misinfocon-discuss-spectrum-recency * https://tantek.com/2019/296/t2/misinfocon-roundtable-spectrums-misinformation - Tantek

"Common sense" is what you invoke when you cannot support your beliefs with either "real arguments" or "real data."

Common sense is the noise that comes out of you when all you've got is the vague sense that you must be right--somehow?--but even *you* don't know why you think that.

Common sense is a slogan for shutting down arguments without having to know or prove anything.

A marvellous video from the team @deutschewellerss which talks about the primary energy fallacy, and how replacing combustion with renewables results in a huge reduction in total energy requirements.

Every thermodynamics lecturer should include this in their lectures, especially giving students the challenge of thinking about what noun never gets mentioned in the entire discussion. #energy #transition #fallacy #climatechange youtube.com/watch?v=EVJkq4iu7b

Oh man...I can already see the claims of companies getting so and so more productive and "streamlining" processes thanks to #AI, while it'll turn out that:

Yes, companies will have gotten more productive.

And no, it's not _directly_ because of AI - it's because employees have inadvertently produced a lot of documentation in the hope of "feeding" the AI, while, by documenting things properly, they'll have actually helped humans doing a better job.

🤦

Supervised self-driving #vehicles are a #fallacy. Normal #drivers can not do that. We can't watch a computer for hours, weeks, then be ready within a second to take over. Moreover, how can we be useful when we take over if we haven't been #driving much lately?

Sure, commercial airline pilots can be in a similar situation. But they have extensive training, including simulators. Such training is very expensive, unaffordable for private car drivers. And pilots have a lot more time to react.
#FSD

Replied in thread

@arstechnica Naive view of #information #fallacy.

It’s well documented that more speech does not have to lead to more good speech, but most often leads to bad speech crowding out the good.

This has happened several times in history when new information technologies were introduced. We tediously developed ways to limit speech so truth & good speech again were favoured.

It’s a Silicon Valley mythology, a self-serving faith serving business interests.

gimulnaut.wordpress.com/2024/0

Gimulnautti · Silicon Valley MythologyNo human groups without some mythology probably exist. A particularly successful group in passing off its myths as common sense, knowledge even, has been Silicon Valley. “The antidote to bad …
Continued thread

Another aspect of debt,
considered as an information technology,
is that if affects the information environment of the borrower.

If you are managing a company which has borrowed money,
making your payments becomes one of the survival conditions for that company.

At low levels of debt, generating short term cash flow is one priority among others,
but for a highly indebted company it becomes a signal which swamps all others.

You might want to change the world, but if you don’t meet the coupon payments, you’ll never get the chance to see if your other strategic priorities would have worked.

Consequently, a company with lots of debt cannot help but have a bias toward the short term.

Which might be considered problematic,
as the last few decades in the Western capitalist world have seen the rise of an industry
(leveraged buyouts, or “private equity”)

which has made it part of its fundamental operating strategy to load companies up with debt.

Considered in this light, debt is a technology of control as well as of information
– it’s a means of exerting discipline on management teams who might otherwise be tempted to follow priorities other than short-term financial returns.

This is, as far as I can tell, the real meaning behind the populist critiques of “#financialisation” in the economy.

There’s really nothing particularly bad about the growth of the financial sector,
even to the extent that it’s outstripped the growth of the “real” economy.

Quite simple mathematics ought to be enough to convince us that as the economy grows,
the number of links and relationships between producers, consumers and investors will grow at a faster rate,
and so you’d expect the parts of the economy in which decision making and information processing take place to grow faster than the “real” economy.

It’s the same logic by which the brains of primates take up proportionally more energy than those of rodents;

finance is part of the real economy, just like the cerebellum is a real organ.

What’s bad about “financialisation” is neither more nor less than the over-use of debt.

Modern corporations do often behave badly,
and they make systematically worse decisions than they used to,
this isn’t a delusion of age.

They do this partly because they have outsourced key functions
(cutting themselves off from important sources of information),

and partly because their priorities are warped by the need to generate short term cash flow.

Both of these problems can in large part be traced back to the private equity industry,
working either as a direct driver of excess leverage,
or as a constant threat which makes managers behave as if they were already subject to its discipline.

#Management #science and #cybernetic #history is all about things which began as solutions,
💥then turned into problems because the world changed.

Once upon a time, back in the 1970s,
private equity and LBOs were the solution to a problem of lazy, sclerotic incumbent management teams,
self-dealing and failing to make tough decisions.

But it’s now the 2020s, and private equity may itself be the biggest problem in our global information processing system.

The way that corporate history progresses is that we try to keep up with the ever-increasing complexity of the world,
♦️and then when this is no longer possible, we have a crisis and reorganise.

We’ve had the crisis
– or perhaps we are still going through it
– and now it’s time to think about how to reorganise.

(3/3)

amazon.com/stores/Dan-Davies/a

Amazon.comDan Davies: books, biography, latest updateFollow Dan Davies and explore their bibliography from Amazon.com's Dan Davies Author Page.
Continued thread

It’s really striking to compare the two big crises of the last two decades. 

The Global Financial Crisis beginning in 2007 was purely a matter of book entries in computers. 

No actual physical capital was destroyed, nobody died. 

By contrast, the COVID-19 pandemic beginning in 2020 was a massive blow to productive capacity
– millions of people died,
buildings were rendered unusable. 

But it was the first of these two crises that led to massive scarring and a prolonged global recession, not the second. 

Why?

It might be said that the reason why is that if you consider the world economy as an organism,
the pandemic attacked its muscles and sinews
while the financial crisis attacked its brain. 

The global financial services industry is a crucial part of the distributed decision-making system of the world,
and its core component is a very old, but still surprisingly poorly understood technology
called #debt.

In the strictest, purest sense,
debt is an “#information #technology

– it’s one of the mechanisms human beings have invented to handle information. 

By structuring an investment in someone else’s project as a debt,
you immediately reduce the space of possible outcomes to two
– you get paid back, or you don’t. 

There are a lot of other information-processing techniques that banks and investors use,
from statistical credit scoring to modern portfolio theory,
but this is the big one. 

It allows a modern bank to keep track of vastly more financial investments than would ever have been possible for a medieval merchant in the first days of double-entry book-keeping. 

Rather than having to preserve face-to-face relationships with every single borrower,
you can rely on the fact that 99% of mortgage loans get paid back in full and on time,
and concentrate your attention on managing the 1% of cases where something goes wrong.

🔥The trouble is that if you build a business on this basis, what happens when it turns out that there’s a small variance❓

Unfortunately, a small variance in the proportion of good loans from 99% to 97% means a tripling in the number of bad loans❗

and consequently a huge excess load on the systems that are meant to deal with them. 

Faced with this massive cognitive overload,
the system froze. 

And even more unfortunately,
in a world in which trillions of dollars need to be rolled over and refinanced every day,
the one thing that the financial sector cannot do is stop for a moment to regain its bearings. 

If information processing was free and the bankruptcy process frictionless,
the Global Financial Crisis would have been over in a month. 

As it was, all the information which had been attenuated by the use of multiple layers of secured debt came back,
suddenly unattenuated and needing to be dealt with.

That’s the “cybernetic history” of the debt crisis which I outline in my book,
and I think it’s a useful alternative perspective to the economic one,
and one which makes it more comprehensible that a relatively small market for synthetic CDOs turned into a continental crisis. 

But this might not even have been the most pernicious use of debt seen in our lifetimes.

(2/3)

profilebooks.com/work/the-unac

Profile BooksThe Unaccountability Machine - Profile Books
Continued thread

More from Dan Davies:

About five years ago, I started to get very interested in an obscure subject called “#management #cybernetics”. 

It was a product of the technological dreamscape of the 1960s and 70s;

after the invention of the computer, but before it became ubiquitous,
in a period when there was room for speculation about how the new world of artificial intelligence would change our world.

I had just finished my previous book
(Lying for Money: How Legendary Frauds Reveal the Workings of the World),
and was keen to say a bit more about how organisations go wrong. 

It seemed to me that it might be possible to expand the concept of a “#criminogenic #organisation
(one where the incentives structurally produce illegal behaviour)
to a more general 🔸“bad-decision-o-genic organisation”.

And furthermore, that the weird mixture of pure mathematics, philosophy, accountancy, physics and economics that came together in the work of now-forgotten management gurus like #Stafford #Beer and #Barry #Clemson might be the way to think about it.

What do bad decision-making organizations have in common❓

Quite a few things,
but one of the clearest signs is something you might call an “#accountability #sink”. 

This is something that might be familiar to anyone who has been bumped from an overbooked flight. 

There is no point getting angry at the gate attendant;
they are just implementing a corporate policy which they have no power to change. 

But nor can you complain to the person who made the decision
– that is also forbidden by the policy. 

The airline has created an arrangement whereby the gate attendant speaks to you with the voice of an amorphous algorithm
-- but you have to speak back as if to a human being like yourself. 

The communication between the decision-maker and the decided-upon has been broken
– they have created a handy #sink into which #negative #feedback can be poured without any danger of it affecting anything.

⚠️This breaking of the feedback links is, I think, one of the most important things that has happened to large organisations
– banks, but also large corporations and government departments
– over the last fifty years. 

In most cases, it’s not been carried out purely as a responsibility-dodging exercise,
or as part of a conscious effort to make things worse. 

That has happened, on occasion,
but for the most part, after spending a lot of time looking into examples,
I concluded that feedback links were being broken simply because 💥they had to be. 

The world keeps growing and getting more complicated,
which means that individual managers gradually become overwhelmed;

the problem of trying to get a sensible drink from the firehose of information that pours into any large organisation every day has become unbearable.

And this is why institutions have started ❌ delegating decisions to systems
– credit scoring algorithms, regulatory risk weighting formulas
and the like. 

As well as allowing decision-making to be automated and industrialised,
they provide a psychological defense system,
👉preventing individual human beings from the consequences of having to make a decision and own it.

Most of the time, these systems work well. 

But when they break down, the consequences can be spectacular. 

Because every such algorithm or rulebook is, implicitly, based on a #model of the thing they’re meant to govern. 

And every such model is capable of failure. 

And when something comes along that’s outside the model
– like, for example, a sustained nationwide fall in US house prices
– you end up in a situation where literally nobody knows what to do.

(1/3)
netinterest.co/p/decisions-nob

@pluralistic
#Boeing #737MAX #Boeing #merger #McDonnell #Douglas #engineering #culture #cost #control #Ricardian #Fallacy #hard #data #culture #best #practice

Net Interest · Decisions Nobody MadeBy Marc Rubinstein

Dan Davies:

These thoughts struck me while listening to the ** Odd Lots podcast on Boeing,
which I thoroughly recommend.

The #Boeing #737MAX is one of the core case studies in
"The Unaccountability Machine" (you can buy it now!),

because it’s a really graphic example of 💥a decision-making system which generated an awful result -- ⚠️without any identifiable natural person being responsible for it.

The Odd Lots episode, focuses on #Boeing's 1997 #merger with #McDonnell #Douglas as the inflection point in Boeing’s history. 

♦️This caused a thorough cultural change from Boeing’s historical “#engineering #culture” -- based on ❇️getting things right and doing what was needed,

♦️to something more in tune with the Jack Welch / Shareholder Value spirit of the times,
🆘focused on #cost #control and "return on investment".

It's kind of odd, though. 

Boeing was the acquirer and the larger company;
McDonnell was actually not in that great shape;
it had a good defence business but a bad civilian aircraft business;
in fact, one of the attractions for Boeing was that McDonnell had spare factory capacity that it could use to accelerate its own overflowing order book. 

As you’d expect from a company run along financial lines, it was quite indebted too. 

So why was it McDonnell’s culture that became dominant?❓

⬇️ Let’s take a step back into economics. 

Joseph Schumpeter identified something he called “The #Ricardian #Fallacy”. 

This is the tendency of economists to 🔹build a theoretical model,
🔹solve the model
and then 🔸act as if they have solved the problem in the real world. 

To an extent, this isn’t particular to economists
– it’s the nature of modelling that having made a representation of reality specifically in order to attenuate its complexity and make a problem manageable,
--⭐️ you don’t then go back and unattenuate it.

But bearing that in mind, the Ricardian Fallacy then interacts with another thing that economists do;
--⭐️ they collect data. 

Data gathering is almost never a neutral activity;
it takes place within a theoretical framework. 

And what this means is that if the system for gathering, classifying and tabulating the data was designed by people who had a particular model,
👉then the data will most likely support that model. 

Everything which is part of the model will be well-verified, data-driven, empirically based and so on. 

Everything which isn’t part of the model will be handwavey, subjective, “hard to quantify” and other synonyms for “probably special pleading and made up”. 

In the book, I have a subsection called “How Ricardians Win Arguments”
and this is how:
– they collect the data.

⬆️ Returning from the digression,
the important thing to understand is that the financial accounts are a model of the business. 

They incorporate a lot of assumptions, of which perhaps the least analysed but most important one is “the financial year is a meaningful time period for this process”. 

Some things appear in the accounts, and they are the things which can be backed up with numbers. 

Other things don’t, and therefore they can’t. 
(Or best case, they can only be backed up with ad hoc, unaudited numbers which everyone will be suspicious of).

💥I think that’s one of the deep causes of what went wrong in Boeing;
♦️the McDonnell-Douglas executives were the ones who could back up their business cases with a ream of #hard #data
♦️The legacy Boeing executives were left talking about #culture and #best #practice and all sorts of soft-sounding things that were hard to put into a model. 

⚠️The Ricardians won the argument, and 🔥the disastrous decisions turned out to have been made without anyone realising they were making them -- when they decided to use the financial reporting system as a tool of management

(0/3)
backofmind.substack.com/p/how-

** Odd Lots Podcast
podcasts.apple.com/us/podcast/

Dan Davies - "Back of Mind" · how the wrong side won at BoeingBy Dan Davies

 
When theoretical physicist #MattODowd worries if #physics is being stalled, could one of the nearly 200 identified #cognitive #biases be at play? One such obstacle to clearer perceiving & thinking is called "Plan Continuation Bias". A 2-minute animated video illustrates the concept. h/t @redshiftdrift

🔗 youtube.com/watch?v=rr9Rlic6hJ
🔗 en.wikipedia.org/wiki/List_of_
🔗 en.wikipedia.org/wiki/Confirma

Henry Thomas Buckle: “[Y]ou can tell the lowest class by their habit of always talking about persons; the next by the fact that their habit is always to converse about things; the highest by their preference for the discussion of ideas.”

However, Buckle also discounted free will in favor of civilization progressing by subduing nature thanks to “mental laws”… proceeding from nature?

He was curiously silent on the mental laws that drove the expression of his beliefs.