mastodon.gamedev.place is one of the many independent Mastodon servers you can use to participate in the fediverse.
Mastodon server focused on game development and related topics.

Server stats:

5.1K
active users

#geophysics

2 posts2 participants0 posts today

Our own @BaerbelW traveled to Vienna for this year's #EGU25 General Assembly of the @EuroGeosciences

Baerbel herself did a couple of presentations in Vienna:

* Examples of Skeptical Science successfully collaborating with other organizations so as to better reach shared goals, get more gain for less effort. With so much reward, we're eager to do more.

* How Skeptical Science translates our content into 29 different languages, the challenges of maintaining a polyglot presence. You may be able to help!

Baerbel also kept a daily journal. It's loaded with links to scads of intriguing information presented at the assembly by many researchers, with teasers and organized for easy access.

Post facto virtual attendance , distilled and at our fingertips. :-)

#geoscience
#geophysics
#ScienceCommunication

skepticalscience.com/egu25-per

Martian Mud Volcanoes

Mars features mounds that resemble our terrestrial mud volcanoes, suggesting that a similar form of mudflow occurs on Mars. But Mars’ thin atmosphere and frigid temperatures mean that water — a prime ingredient of any mud — is almost always in either solid or gaseous form on the planet. So researchers explored whether salty muds could flow under Martian conditions. They tested a variety of salts, at different concentrations, in a low-pressure chamber calibrated to Mars-like temperatures and pressures. The salts lowered water’s freezing point, allowing the muds to remain fluid. Even a relatively small amount of sodium chloride — 2.5% by weight — allowed muds to flow far. The team also found that the salt content affected the shape the flowing mud took, with flows ranging from narrow, ropey patterns to broad, even sheets. (Image credit: P. Brož/Wikimedia Commons; research credit: O. Krýza et al.; via Eos)

Bifurcating Waterways

Your typical river has a single water basin and drains along a river or two on its way to the sea. But there are a handful of rivers and lakes that don’t obey our usual expectations. Some rivers flow in two directions. Some lakes have multiple outlets, each to a separate water basin. That means that water from a single lake can wind up in two entirely different bodies of water.

The most famous example of these odd waterways is South America’s Casiquiare River, seen running north to south in the image above. This navigable river connects the Orinoco River (flowing east to west in this image) with the Rio Negro (not pictured). Since the Rio Negro eventually joins the Amazon, the Casiquiare River’s meandering, nearly-flat course connects the continent’s two largest basins: the Orinoco and the Amazon.

For more strange waterways across the Americas, check out this review paper, which describes a total of 9 such hydrological head-scratchers. (Image credit: Coordenação-Geral de Observação da Terra/INPE; research credit: R. Sowby and A. Siegel; via Eos)

Energy Flow and Earth: How Earth Works by John A. Whitehead, 2024

This book shows how energy flow plays a major role in: plate tectonics; the formation of continents; ocean basins; and building mountains. Energy flow also produces and drives volcanos, Earth’s magnetic field, the wind belts, our weather, and ocean circulation.

Chapter abstracts:
link.springer.com/book/10.1007

@bookstodon
#books
#nonfiction
#geology
#geophysics
#EarthScience
#Earth
#energy

🔴 **Evidence of the Zanclean megaflood in the eastern Mediterranean Basin**

“_Our findings provide evidence for a large amplitude drawdown in the Ionian Basin during the MSC, support the scenario of a Mediterranean-wide catastrophic flood at the end of the MSC, and suggest that the identified sedimentary body is the largest known megaflood deposit on Earth._”

Micallef, A., Camerlenghi, A., Garcia-Castellanos, D. et al. Evidence of the Zanclean megaflood in the eastern Mediterranean Basin. Sci Rep 8, 1078 (2018). doi.org/10.1038/s41598-018-194.

#OpenAccess #OA #Article #DOI #Geology #Geomorphology #Geophysics #Sedimentology #Flood #Mediterranean #Academia #Academics @geology

Reclaiming the Land

Lava floods human-made infrastructure on Iceland’s Reykjanes peninsula in this aerial image from photographer Ael Kermarec. Protecting roads and buildings from lava flows is a formidable challenge, but it’s one that researchers are tackling. But the larger and faster the lava flow, the harder infrastructure is to protect. Sometimes our best efforts are simply overwhelmed by nature’s power. (Image credit: A. Kermarec/WNPA; via Colossal)

Slipping Ice Streams

The Northeast Greenland Ice Stream provides about 12% of the island’s annual ice discharge, and so far, models cannot accurately capture just how quickly the ice moves. Researchers deployed a fiber-optic cable into a borehole and set explosive charges on the ice to capture images of its interior through seismology. But in the process, they measured seismic events that didn’t correspond to the team’s charges.

Instead, the researchers identified the signals as small, cascading icequakes that were undetectable from the surface. The quakes were signs of ice locally sticking and slipping — a failure mode that current models don’t capture. Moreover, the team was able to isolate each event to distinct layers of the ice, all of which corresponded to ice strata affected by volcanic ash (note the dark streak in the ice core image above). Whenever a volcanic eruption spread ash on the ice, it created a weaker layer. Even after hundreds more meters of ice have formed atop these weaker layers, the ice still breaks first in those layers, which may account for the ice stream’s higher-than-predicted flow. (Image credit: L. Warzecha/LWimages; research credit: A. Fichtner et al.; via Eos)

Danish seismologist and geophysicist Inge Lehmann died #OTD in 1993.

She is best known for her discovery in 1936 of the solid inner core that exists within the molten outer core of the Earth. The seismic discontinuity in the speed of seismic waves at depths between 190 and 250 km is named the Lehmann discontinuity after her. Lehmann is considered to be a pioneer among women and scientists in seismology research.

en.wikipedia.org/wiki/Inge_Leh